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Bullous pemphigoid (BP) is an autoimmune blistering disease which carries a significant

mortality and morbidity. While historically BP has been characterized as an IgG driven

disease mediated by anti-BP180 and BP230 IgG autoantibodies, developments in

recent years have further elucidated the role of eosinophils and IgE autoantibodies.

In fact, eosinophil infiltration and eosinophilic spongiosis are prominent features in BP.

Several observations support a pathogenic role of eosinophils in BP: IL-5, eotaxin,

and eosinophil-colony stimulating factor are present in blister fluid; eosinophils line the

dermo-epidermal junction (DEJ) in the presence of BP serum, metalloprotease-9 is

released by eosinophils at the site of blisters; eosinophil degranulation proteins are found

on the affected basement membrane zone as well as in serum corresponding with clinical

disease; eosinophil extracellular DNA traps directed against the basement membrane

zone are present, IL-5 activated eosinophils cause separation of the DEJ in the presence

of BP serum; and eosinophils are the necessary cell required to drive anti-BP180 IgE

mediated skin blistering. Still, it is likely that eosinophils contribute to the pathogenesis of

BP in numerous other ways that have yet to be explored based on the known biology of

eosinophils. We herein will review the role of eosinophils in BP and provide a framework

for understanding eosinophil pathogenic mechanisms in mucocutaneous disease.

Keywords: bullous pemphigoid, eosinophils, eosinophilia, major basic protein, eosinophil cationic protein,
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INTRODUCTION TO BULLOUS PEMPHIGOID

Clinical Presentation of Bullous Pemphigoid
Bullous pemphigoid (BP) is the most common autoimmune blistering disease with an estimated
annual incidence between 2 and 22 new cases per million people (1–8). BP mainly affects the
elderly with an age of onset in the late 70s (8–10). Association with neurological disorders such as
dementia, Parkinson’s disease and cerebrovascular disease is seen in between 28–56% of BP patients
(8, 11).

Most commonly, BP presents with chronic and recurrent blisters, usually arising on urticarial
or eczematized skin, favoring the abdomen, and flexural aspects of the extremities. Blisters turn
into erosions by mechanical friction with subsequent crust formation and healing. Prior to the
development of the blisters, a prodrome of pruritus with or without urticarial lesions commonly
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occurs (12). Oral involvement is seen in 10–20% of BP patients
(13, 14). Pruritus alone may be the only symptom of BP in some
of the cases, though it is controversial whether these patients
represent falsely seropositive elderly patients with other causes
of pruritus, or are in fact pre-clinical cases of BP (15, 16).

Numerous clinical variants exist, with atypical clinical variants
accounting for approximately 20% of cases (8, 10, 13, 16).
Likewise, medications can also induce bullous pemphigoid, (8,
17–20) with a more atypical clinical and immunologic phenotype
seen particularly in patients with dipeptidyl-4 inhibitor induced
BP, who demonstrated a decrease in peripheral eosinophil
infiltration (21–24).

Diagnosis of Bullous Pemphigoid
Histological sections of BP typically show a subepidermal
blister with variable degree of inflammatory infiltrate composed
of lymphocytes, neutrophils, and characteristically eosinophils.
Histological presentation may vary depending on the clinical
presentation. Urticarial lesions may present with spongiosis and
eosinophils infiltrating the epidermis, also termed eosinophilic
spongiosis, with an absence of subepidermal clefting (Figure 1)
(25, 26).Peripheral eosinophilia is present in around 50% of
treated patients (27–29).

The diagnosis of BP requires further immunology workup
in the form, of immunofluorescence and serologic studies.
Direct immunofluorescence reveals linear deposition of IgG and
complement component 3 (C3) at the dermal-epidermal junction
(DEJ); linear IgA or IgE positivity is sometimes appreciated
(8, 30, 31). Indirect immunofluorescence (IIF) shows linear
deposition of IgG at the basement membrane on monkey
esophagus or the epidermal side of salt-split human skin (32).
Circulating antibodies against the proteins BP180 and BP230
can be detected in serum samples by ELISA, with sensitivities
ranging from 66 to 100% (33–36). Sensitivity of the BP180 non-
collagenous 16A (NC16A) domain ELISA is comparable with
that of IIF with salt-split skin (37).

Pathogenesis of Bullous Pemphigoid
Evidence points to formation of autoantibodies against
the hemidesmosomal proteins BP180 and BP230 as the
leading events in blister formation in BP both clinically and

Abbreviations: AP-1, activator protein-1; APC, antigen presenting cell; APRIL,
activation and proliferation-induced ligand; BAFF, B cell-activating factor;
BMZ, basement membrane zone; BNP, brain natriuretic peptide; BP, bullous
pemphigoid; C3, Complement 3; CCL5, RANTES (regulated on activation,
normal T-cell expressed and secreted); CCL11, Eotaxin-1; CCL24, Eotaxin 2;
CCL26, Eotaxin 3; ChAT, choline acetyltransferase; CRTH2, prostaglandin DP2
receptor; DEJ, Dermal-epidermal junction; ECP, eosinophil cationic protein; EDN,
eosinophil derived neurotoxin; EET, eosinophil extracellular traps; EPX, eosinophil
peroxidase; FcεRI, human high-affinity IgE receptor; GM-CSF, granulocyte-
macrophage colony-stimulating factor; IIF, indirect immunofluorescence; ICAM-
1, intercellular adhesion molecule-1; IP-10, IFN- γ- inducible protein 10; MBP,
major basic protein; MCP, monocyte chemoattractant protein; MIG, monokine
induced by IFN- γ; MMP-9, Metalloprotease 9, Gelatinase B; NC16a, non-
collagenous 16A domain of BP180; NE, neutrophil elastase; NGF, nerve growth
factor; NK1R, neurokinin-1 receptor; NK2R, neurokinin-2 receptor; PAF, platelet
activating factor; ROS, reactive oxygen species; TNF-α, tumor necrosis factor-
α; VAChT, vesicular acetylcholine transporter; VCAM-1, vascular cell adhesion
molecule-1.

FIGURE 1 | Uriticarial bullous pemphigoid. Histological section shows dermal

inflammatory cells, predominantly composed of eosinophils, which line up at

the dermoepidermal junction. Notice the spongiosis and exocytosis of

eosinophils through the basement membrane into the spinous layer. H&E ×

4000. (Courtesy of Dr. Philip LeBoit and the Dermatopathology Service at

UCSF).

experimentally (38, 39). BP180 (type XVII collagen) is a
transmembrane glycoprotein with an extracellular C-terminus
that mediates adhesion between the epidermis and the basement
membrane (28). Association of disease activity has been
demonstrated to clinically correlate with serum concentration of
IgG antibodies against NC16A which is considered to contain
the main pathogenic epitope of BP (40). Experiments with
cultured human keratinocytes have shown cell detachment
with reduced BP180 expression after tissue was incubated with
antibodies against BP180 protein (41); moreover, anti-BP180
IgG and IgE induce signal transduction events with upregulation
of interleukin-6 and interleukin-8 confirmed at the protein and
mRNA levels (42–44). These results have been reproduced by
transgenic mice expressing human BP180 (45).

Utilizing this humanized BP180 model, investigators
demonstrated the role of T-cells as helpers of B-cells to
differentiate into plasma cells and produce autoreactive IgG.
Particularly they showed that NC16A-reactive CD4+ T cells in
these mouse model could activate B-cells to produce anti-NC16A
IgG via CD40-CD40L interaction (46). In humans, there is an
association between BP and the HLA-DQB1∗03:01 allele, as
stimulation with BP180 to both healthy and BP patients with
this allele can exert a T-cell response. Patients with BP, however,
demonstrate a Th2 response while healthy HLA matched
controls demonstrate a Th1 response (47–49).

BP230 is an intracellular plakin-like protein of the
hemidesmosomal plaque (28). The pathogenic role of anti-
BP230 antibody has not been found to be as conclusive as
anti-BP180 antibody because blisters have not been observed
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consistently in animal models in which antibodies to BP230 are
present. Furthermore, relationship between serum anti-BP230
autoantibody and disease activity has not been clearly established
(12). In clinical practice, the use of ELISA for antibody to BP230
protein increases the sensitivity only 5–10% when combined
with that for BP180 protein (50–52). Still, anti-BP230-type BP
has been described a distinct entity, thus suggesting a pathogenic
role of these autoantibodies as well as a potential for synergy
with other pathogenic anti-basement membrane zone (BMZ)
autoantibodies (53).

Despite the clear pathogenic role of anti-BP180 IgG
autoantibody, many clinical manifestations and pathways are
not easily explained by this alone. Effector cells of cell-mediated
autoimmunity must be considered as significant contributors
to the pathogenesis of BP. Eosinophils, have several known
pathogenic roles in BP. Likewise, several known functions of
eosinophils that have yet to be described in BP may play an
additional role in the pathogenesis and symptoms of BP. We
will review both known contributions of eosinophils to the
pathogenesis of BP, as well as known mechanisms of pathogenic
action of eosinophils that have yet to be evaluated specifically in
BP.

INTRODUCTION TO EOSINOPHILS

Eosinophils are effector cells found in various organs including
the skin. Their impact on biological processes is likely mediated
primarily by their cytoplasmic granules. These granules are
classified as primary, secondary, small granules, and lipid bodies
(54). Secondary granules contain four toxic basic proteins:
the major basic protein (MBP), eosinophil peroxidase (EPX),
eosinophil derived neurotoxin (EDN) and eosinophil cationic
protein (ECP). The crystalloid core of secondary granules is
constituted by highly cationic MBP and is covered by the 2
ribonucleases: ECP and EDN (55). ECP is used extensively as a
marker to assess activity in various inflammatory diseases (56).
Granules are secreted when eosinophils become activated. These
granules are highly toxic to microbes, parasites, and tumor cells
(57). For instance, ECP is a cytotoxic ribonuclease with the
ability to exterminate parasites, bacteria and virus in vitro (56).
Moreover, ECP forms pores or transmembrane channels, which
ultimately results in cellular damage and death (58). ECP can also
lead to epithelial and neuronal apoptosis (59–61). MBP toxicity is
mediated by affecting the charge of cellular surface membranes
resulting in disruption and altered permeability leading to
cellular injury (54, 62). Eosinophils are also implicated in the
production of various cytokines, chemokines, lipid mediators,
and superoxide. Complex immunomodulatory functions have
been attributed to eosinophils which can also act as antigen-
presenting cells (APCs) (57).

Peripheral eosinophilia is the result of the secretion of several
factors such as IL-5, granulocyte-macrophage colony-stimulating
factor (GM-CSF), and IL-3 (63). Migration of eosinophils from
circulation into the skin is mediated at least in part by very late
activation antigen-4 (VLA4) which is expressed in eosinophils
and binds to vascular cell adhesion molecule 1 (VCAM-1) on

vascular endothelium. Other chemoattractants include eotaxin-
1 (CCL11), eotaxin-2 (CCL24), eotaxin-3 (CCL26), RANTES
(CCL5), and monocyte chemoattractant proteins which can bind
to eosinophils and lead them to lesional sites (57, 64, 65).

Known Mechanisms by Which Eosinophils
Can Contribute to the Pathogenesis of
Bullous Pemphigoid
There are several lines of evidence suggesting the role of
eosinophils in the pathogenesis of BP. Peripheral blood
eosinophilia is present in ∼50% of affected patients (27–
29). Furthermore, elevated serum concentrations of secretory
granules, such as ECP, are significantly elevated in patients with
BP, with levels paralleling disease severity (55, 66–71). A similar
relationship has been documented to occur with IL-5 levels which
runs parallel not only to disease severity, but also to ECP levels
(68, 72–80). This is consistent with an increase in eosinophil
activation, as confirmed by expression CD69, in peripheral blood
and lesional skin of BP patients (81). While an increase in blood
and tissue eosinophils has long been known (82), the actual role
of eosinophils in the pathogenesis of BP is becomingmore readily
understood.

Production of Metalloproteases
Proteases including gelatinase B (92-kD gelatinase, matrix
metalloproteinase [MMP]-9) and neutrophil elastase (NE) play
a significant role in degrading BP180 and cleaving the DEJ (83).
MMP-9 is released as a zymogen and is subsequently activated by
a series of proteases including MMP-2, 3, 7, 10, and 13, as well
as cathepsin G, plasmin, and trypsin. MMP-9 intervenes in tissue
remodeling and facilitates cellular migration, extracellular matrix
degradation and tissue destruction (84). Studies in isolated
human eosinophils have documented that tumor necrosis factor-
α (TNF-α) is a potent stimulator for a rapid release of pro-MMP-
9 (85). Experiments in peripheral blood of allergic volunteers
demonstrated that IL-3 in combination with TNF-α induces
significant MMP-9 synthesis by eosinophils (84).

MMP-9 can cleave the extracellular collagenous domain of
recombinant 180-kD BP antigen (86). Eosinophils appear to
be the principal culprit in MMP-9 secretion. Strong signal for
gelatinase mRNA has been detected in eosinophils but not in
neutrophils at site of blister formation. In vitro studies conducted
in Matrigel have likewise demonstrated eosinophils’ ability to
degrade the BMZ, identifying MMP-9 as the key protease.
Notably, release of MMP-9 was increased only in the presence
of both IL-5 and platelet activating factor (PAF) (87).

The direct role of MMP-9 in cleaving BP180 has been
challenged, based on its ability to regulate neutrophil elastase
(NE). In mouse models, MMP-9 regulates NE activity by
inactivating α1-proteinase inhibitor, thus contributing to further
degradation of BP180 and DEJ separation (88). Studies by
Verraes et al showed that despite the presence of the proform
of MMP-9 in human lesional skin, BP180 degradation could
be inhibited by a specific elastase inhibitor, but not by a wide
spectrum of matrix metalloproteinase inhibitor, suggesting the
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importance of the regulatory role of MMP-9 on NE in blister
formation (83).

Production of Eosinophil Degranulation
Proteins
Eosinophils and neutrophil granule proteins can be detected
in the blister fluid and serum of BP patients (55, 66, 67, 89).
Moreover, studies have found peroxidase positive eosinophil
granules along lamina lucida of the BMZ in BP patients
(90). Scanning electron microscopy studies have revealed
granule release into basal cells (91). Eosinophil granule protein
deposition has been demonstrated not only in fully developed
blisters, but also at the earliest stages of blister development and
urticarial lesions of BP (73, 92). Eosinophil degranulation has also
been observed in pemphigoid gestationis, a gestational variant of
BP, whereby MBP is deposited extracellularly in the dermis (93).

More recent in vivo observations have demonstrated the
presence of ECP, EDN, EPX, and MBP in skin. In addition,
in vivo experiments in guinea pig skin have demonstrated
the presence of these granules for weeks after intradermal
injection at concentrations seen in human disease. During
these experiments, Davis et al demonstrated increased cutaneous
vascular permeability as an effect of the degranulation;
however, basement membrane and epidermal alterations such as
spongiosis were not examined (94).

In vitro experiments have shown that eosinophils may
be activated through augmenting cell-surface receptors and
receptor-linked oxidative metabolism (95). Upon activation,
eosinophils degranulate (55, 66, 67, 89). Tsuda et al. demonstrated
that degranulated eosinophils adhered to basal keratinocytes
suggesting that eosinophil granules may directly damage
basal keratinocytes leading to DEJ separation (89). We have
demonstrated that MBP has a concentration dependent cytotoxic
effect on cultured keratinocytes (96).

As eosinophils also release tissue factor (TF), an initiator
of blood coagulation, Marzano et al, hypothesized a role for
local activation of the coagulation cascade in BP. This was
confirmed to be the case (97), with subsequent correlation
between ECP levels and prothrombotic markers (70). Cases with
higher coagulation, like ECP, are associated with more severe
disease (97). Whether this contributes to blister development is,
however, unclear.

Production of Eosinophil Extracellular
Traps
Relevance of extracellular traps produced by eosinophils (EET)
have increased, at least in part due to the interesting findings
obtained from studies on neutrophils. Extracellular traps consist
of network-like structures containing DNA, granule proteins
and nuclear proteins. These traps can expand up to 15 times
the size of the cell, thereby increasing the effective targeting
area (98). Experiments performed on skin biopsies from human
participants have shown that EET are present in infectious skin
diseases, allergic diseases and autoimmune diseases including
BP. The number of eosinophils releasing DNA appear to be
around 10%, though this phenomenon was most commonly

observed in Well’s syndrome, whereby trap formation was seen
in up 30% (99). Ex vivo experiments utilizing human skin and
isolated human eosinophils have shown that EET may contribute
to DEJ splitting, after the observation that DNase significantly
reduced DEJ separation (99). Still, the mechanism by which EET
contribute to DEJ separation is unclear.

Link Between Anti-BP180 IgE
Autoantibodies and Dermo-Epidermal
Junction Separation
Evidence supporting the pathogenic role of IgE autoantibodies
in BP as well as its relationship with eosinophils has increased
in recent years. Passive transfer of anti-BMZ IgE autoantibodies
results in erythema, pruritis, eosinophil infiltration, and
histologic blistering (100). This study did, however, use the
LABD97 portion of the BP180 protein rather than the NC16A
portion. Lin et al. created a transgenic mouse model expressing
human hNC16A and human high-affinity IgE receptor (FcεRI),
showing that anti-NC16A IgE from BP patients induced
subepidermal split as well as eosinophil infiltration and IgE
deposition at the DEJ. Particularly, they found that eosinophils
are essential in order to induce BMZ separation in the presence
of anti-NC16A IgE in vivo. This step appears to be key in
DEJ separation, thus supporting the pathogenic role of IgE
autoantibodies against the NC16A region of the BP180. Likewise,
eosinophils in this animal model expressed FcεRI, thus providing
a further link between IgE autoantibodies, eosinophils and blister
formation, occurring independently of neutrophils (101).

The expression of FcεRI in monocytes, mast cells, basophils,
eosinophils, dendritic cells, and platelets has been highlighted
recently as a link between the biology of these cells in the presence
of IgE autoantibodies (102). FcεRI, the high affinity IgE receptor
is typically minimally expressed on eosinophils, but it is highly
expressed on eosinophils in BP and other diseases characterized
by high IgE and eosinophilia (103). FcεRI consist of an α-
chain, which controls IgE binding, and β- and γ-chains, which
intervene in signal transduction. These chains have been found in
either tetrameric (αβγ2) or trimeric (αγ2) form in humans (103).
Interestingly, investigators have found mRNA for α-,β-, and γ-
chains in eosinophils of BP patients. These FceRI eosinophils
appear to predominate in the dermis rather than epidermis (104).
The capability of eosinophils to bind IgEmay thus influence their
subsequent degranulation (103).

Elevated serum IgE in patients with BP was first described
in 1974 (105). Since then, several studies have demonstrated
elevated IgE levels in up to 40–50% of patients, with the notable
discovery of anti-basement-membrane IgE autoantibodies (29,
106–108). Advancements in technology led scientists in the 1990s
to identify IgE autoantibodies to different BP molecules such as
BP230 (109, 110). Later in the 2000s, IgE autoantibodies targeting
NC16A, the principle epitope of BP180 to which IgG4 antibodies
preferentially react, were described (111). IgE reactivity with
other epitopes, particularly the intracellular domain of BP180
was subsequently described (112). This intracellular domain
is critical for incorporating proteins into hemidesmosomes,
raising the possibility that autoantibodies against it could
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impair the interaction of BP180 with other constituents of
the hemidesmosome (112). Experiments conducted by Freire
et al provided evidence that IgE and BP180 form immune
complexes in BP skin. Furthermore, in vitro experiments found
that IgE-BP180 complexes have the potential to cross-link FcεRI
in basophils leading to activation and degranulation (113).
Approximately half of patients demonstrate IgE autoantibodies
against BP180 and BP230 (114). Ultimately, the use of an
eosinophil deficient mouse demonstrated that eosinophils are
the essential link between anti-BP180 IgE antibodies and BP
(101).

Despite the prevalence and clear causal role of anti-
BP180 IgE in inducing BP, the clinical significance of these
autoantibodies remains unclear (114). A systematic review of
studies associating disease phenotype with the presence of
anti-BMZ IgE found no association with phenotype, though
the presence of anti-BMZ IgE was associated with greater
disease severity (115). Treatment results with omalizumab, a
monoclonal antibody blocking soluble IgE from binding to its
receptors, have been mixed with moderate efficacy, showing only
a limited role as a monotherapy (116–118). As anti-BP180 IgE
ELISA is not routinely available, selecting BP patients for this
treatment regimen remains a challenge in the routine clinical
practice.

Production of Key Cytokines and
Chemokines
Evidence of both inflammatory and anti-inflammatory cytokines
have been described to be present in BP. Elevated levels of
proinflammatory (IL-6, TNF-alpha, IL-8) and anti-inflammatory
cytokines (IL-4, IL-10) have been reported (119). Moreover,
Giomi et al has suggested that cytokine milieu varies according
to the chronicity of BP. An initial Th0/Th2-like response
would be seen in early stage of BP with IL-4, IL-5, and
low levels of IFN- γ. Whereas in chronic phases, a Th1
response would follow with significant expression of IFN- γ

(120).
A complex network of chemokines also contributes to the

development of BP. Both Th1 and Th2 chemokine profiles are
exhibited in BP as follows: macrophage inflammatory protein-
1 β (MIP-1β) and IFN- γ- inducible protein 10 (IP-10) for
Th1; and eotaxin, monocyte chemoattractant protein (MCP)-
4 for Th2. Overall, there is predominance of Th2 chemotactic
activity compared to Th1 cells (79). Other studies have shown
significantly levels of MCP-1, and IP-10, monokine induced by
IFN- γ (MIG) for Th1 (121), and, eotaxin, CCR3, and MCP-
4 for Th2 (77, 79, 122). Experiments conducted by Gounni-
Abdelilah et al found that eotaxin and MCP-4 were present in
eosinophil granules in the bullae of patients with BP, as well
as in the epidermis and infiltrating eosinophils in skin of BP
patients and these were secreted by eosinophils when stimulated
by IgG, IgA, or IgE immunocomplexes (79). This autocrine
pathway may thus perpetuate the immune response in BP,
leading to chronicity of lesions (79). Cytokines and chemokines
known to be produced by eosinophils are summarized in
Table 1.

TABLE 1 | Cytokines and chemokines capable of being secreted by eosinophils

(65).

Cytokines Chemokines

A proliferation-inducing ligand (APRIL) CCL3/macrophage inflammatory

protein-1α (MIP-1α)

Granulocyte/macrophage

colony-stimulating factor (GM-CSF)

CCL5/RANTES

Interleukin-1α CCL11/eotaxin

Interleukin-1β CCL13/monocyte chemoattractant

protein-4 (MCP-4)

Interleukin-2 CCL17/thymus activation regulated

chemokine (TARC)

Interleukin-3 CCL22/macrophage-derived

chemokine (MDC)

Interleukin-4 CCL23/myeloid progenitor inhibitory

factor 1 (MPIF-1)

Interleukin-5 CXCL1/Groα

Interleukin-6 CXCL5/epithelial-derived

neutrophil-activating peptide 78

(ENA-78)

Interleukin-10 CXCL8/interleukin-8

Interleukin-11 CXCL9/monokine induced by gamma

interferon (MIG)

Interleukin-12 CXCL10/interferon γ induced protein

10 (IP-10)

Interleukin-13 CXCL11/interferon-inducible T cell

alpha chemoattractant (I-TAC)

Interleukin-16

Interleukin-17

Interleukin-25

Interferon-γ (IFNγ)

Tumor necrosis factor-α (TNF)

KNOWN MECHANISM OF EOSINOPHILS
WITH POTENTIAL ROLES IN BP
(HYPOTHESIS)

Learning From Other Eosinophil-Mediated
Conditions
Numerous conditions involve a predominance of eosinophils
such as allergic reactions, parasitic infections, and certain
malignancies. From these, a large amount of information
regarding the function of eosinophils has been discovered.
However, it is important to note that not all eosinophils are
the same, even within the same disease and organ system.
Eosinophils differ in their molecular pattern as observed by
Lingblom et al. when investigating differences in children
and adults with eosinophilic esophagitis (123). Moreover,
investigations in healthy individuals revealed age-dependent
differences in levels of eosinophil markers. For instance, levels
of CD44 increased with age, while levels of CD54, prostaglandin
DP2 receptor (CRTH2), and galectin-10 decreased with age. In
addition, they demonstrated that young healthy children express
highest levels of galectin-10, CRTH2, and CD54 and that these
diminish with age (123). Similarly, the gastrointestinal system
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hosts substantial number of eosinophils exhibiting differences
to eosinophils in the lungs or blood. For example, intestinal
eosinophils rarely degranulate, and their lifespan is far longer
than of those found in inflammatory sites (124, 125).

Despite these limitations, many functions of eosinophils
appear to be retained across allergic diseases. To what degree
they contribute specifically to BP, however, remains to be
determined. We thus review these known mechanisms, which
have a scientific rationale for contributing to the pathogenesis
and symptomatology of BP.

The Role of Eosinophils in BP Related
Pruritis
Pruritis is a hallmark of BP. In certain cases, it can be the
presenting symptom, even when a rash is not present (16). While
the depletion of BP180 in itself can generate itch as seen in
BP180 knockout mice (126), several other pathways potentially
contribute to this cardinal symptom of BP.

Interleukin-31
IL-31 belongs to the IL-6 family of cytokines produced in part
by activated Th2 cells (127). It has a significant role in itch, by
activating endothelin-1 responsive neurons and by increasing the
release of brain natriuretic peptide (BNP), a central mediator
of itch (128, 129). IL-31 additionally induces cutaneous nerve
growth and branching (130).

In BP, elevated levels of IL-31 have been demonstrated in
serum and in lesional skin of patients (131) and has been
significantly associated with both eosinophilia and elevated anti
BP-180-IgE (132). Eosinophils are capable of producing IL-31
(132, 133). In fact, eosinophils were recently shown to be the
primary source of IL-31 in BP (134).

Substance P
Substance P is a major pruritogen and vasodilator released
from peripheral nerves. The presence of substance P in BP
has, however, varied between studies (135, 136). Substance P
can have significant interactions with eosinophils. In mouse
models of atopic dermatitis, degranulated eosinophils have been
found surrounding an increased number of substance P-positive
nerve fibers in lesional skin (137). Also, nasal provocation with
substance P in patients with allergic rhinitis leads to an increased
number of eosinophils (138, 139). Substance P acts on cells
via binding to neurokinin-1 receptor (NK1R) and neurokinin-
2 receptor (NK2R). Interestingly, effects of substance P on
eosinophils include inhibition of apoptosis in a comparable
manner to IL-3, a known apoptosis inhibitor, which contribute
to extend eosinophil survival and may perpetuate its biological
effects in disease (139).

Substance P can also induce the release of nerve growth
factor (NGF) and IL-31 from eosinophils, in addition to mast
cells. NGF may play a significant role mediating pruritus due
to its ability to sensitize primary itching sensing neurons (140).
NGF released from eosinophils may then stimulate neighbor
nerves to further release substance P. Other roles of substance
P on eosinophils include chemotaxis, activation and survival,
thus potentially perpetuating the itch cycle. Mast cell-eosinophil

crosstalk can also develop a neuro-immune communication axis
and subsequently induce distinctive substance P itch (140).

Direct Interaction With Peripheral Nerves
Eosinophils interact with nerve cells leading to enhanced growth
and branching resulting in enhanced innervation of the skin,
as documented in cultured dorsal root ganglion neurons (141,
142). Eosinophils also coordinate changes in neurotransmitter
release, and protection from cytokine-induced apoptosis. In
part, these interactions occur as a result of activation of neural
NFκB, activated by adhesion of eosinophils to neural intercellular
adhesion molecule-1 (ICAM-1) (143).

The close relationship of eosinophils and nerves has been
demonstrated in human skin samples of atopic dermatitis
patients where investigators observed increased nerve
density near eosinophil granule proteins. These findings
were reproduced in mice whereby histological samples of murine
skin showed that IL-5-stimulated eosinophils were present in the
same epidermal foci of increased nerves. In vitro experiments
with cultures of eosinophils have shown a dramatic increase in
branching of sensory neurons. Collectively, these findings are in
favor of an important role for eosinophils in cutaneous nerve
growth (141).

Eosinophil granules may mediate a crosstalk between
nerves and eosinophils. In histological samples of prurigo
nodularis patients, for example, ECP- and EDN/EPX-containing
eosinophils were primarily distributed in the upper dermis where
nerves were also increased in number. Some of these nerves were
even in direct contact with eosinophils (144).

Interaction With the Autonomic Nervous System
Eosinophils and the autonomic nerve system demonstrate a
two-way cross talk. In vitro experiments demonstrate that
the adherence of eosinophils to cholinergic nerves triggers a
series of molecular events including activation of NFκB and
activator protein (AP)-1 in the nerve cells, ultimately promoting
nerve growth (145). In guinea pigs, adhesion of eosinophils
to parasympathetic nerves results in release of reactive oxygen
species (ROS) via neuronal NADPH oxidase, as well as activation
of p38 MAP kinase (146). Eosinophils have also been implicated
in the remodeling of neurites of the cholinergic nerve cell line
(146).

Individual eosinophil derived granule proteins have
been shown to affect cholinergic nerves. At non-cytotoxic
concentrations, eosinophil cationic proteins have been shown
to induce nerve cell signaling pathways by phosphorylation
of the MAP kinases ERK 1/2, p38, and AKT and subsequent
activation of the nuclear transcription factor NFκB (147). EPX
has been shown to upregulate choline acetyltransferase (ChAT)
and vesicular acetylcholine transporter (VAChT) gene expression
while MBP upregulated VAChT alone. These enzymes coordinate
the production of acetylcholine whereby ChAT catalyzes the
production of acetylcholine from choline and acetyl-CoA, and
VAChT regulates packaging into vesicles for synaptic release
(148).

MBP and NGF have also been implicated in upregulating
muscarinic M2 receptor expression in vitro; observed changes
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were associated with a reduction of intracellular neural
acetylcholine and an increase in choline content (149, 150).
MBP also protects nerve cells from apoptosis by upregulation of
adhesion-dependent activation of ERK1/2, inducing expression
of the antiapoptotic gene bfl-1 and bfl-2 (147, 149, 151).
Thus, MBP released from eosinophils at inflammatory sites
may regulate peripheral nerve plasticity by inhibiting apoptosis
(147). In animal models, eosinophil MBP is associated with the
hyperreactivity of cholinergic nerves (148, 152–155).

Cholingeric nerves additionally can influence eosinophils.
Eosinophil degranulation has been demonstrated in tissue taken
from patients with inflammatory bowel disease and asthma in
which eosinophils adhered to cholinergic nerves (156, 157).
Interestingly, nicotinic agonists decrease eosinophil infiltration
in lungs and airways of mice (158).

Eosinophils Act as Antigen Presenting
Cells
While eosinophils had traditionally been considered an effector
cell, recent advances have elucidated the multifaceted nature
of eosinophils which can affect tissue homeostasis, metabolism,
and immune regulation in both disease and the steady state
(159). Eosinophils can effectively process antigen, express co-
stimulatory molecules, traffic to the lymph node and induce a
T-cell response (160–163). This can be stimulated by GM-CSF.
Studies in wild-type mice have demonstrated that eosinophils in
the lamina propria of the intestine express surface markers such
as MHC II and CD80 suggesting that eosinophils in this location
are capable of functioning as APCs. Moreover, investigators
identified intraepithelial eosinophils exhibiting dendrites with
extensive reaches. Further experiments with antigen sensitized
mice revealed that despite the presence of two distinct
populations, both populations of eosinophils acquired intestinal
antigen in vivo (159). Double stain-immunohistochemistry has
likewise been used to demonstrate T-cell activation and tissue
eosinophils expressing MHC-II in specimens of eosinophilic
esophagitis (164). Still, the efficiency of eosinophils as APCs, their
function in the skin, and their ability to process key antigens in
BP remains unknown.

Direct Pathogenic Actions of
Degranulation Proteins and Reactive
Oxygen Species
Eosinophil degranulation proteins are capable of inducing
cytotoxicity through several mechanisms. ECP induces pore
formation in the cell membranes contributing to inflict cellular
damage (58), while MBP increases smooth muscle reactivity
due to selective allosteric antagonism of vagal muscarinic M2
receptors (165) and triggers degranulation of mast cells and
basophils (166, 167). While we demonstrated a cytotoxic effect of
degranulation proteins on keratinocytes at physiologic doses seen
in BP (96), it is unclear the extent of damage in vivo as necrosis is
not a histologic feature of BP.

Eosinophil peroxidase generates hydrogen peroxidase as well
as superoxide, causing additional damage (168). Interestingly,
blockade of ROS was capable of inhibiting blister formation in

an ex vivo model of BP (169). Limitations to the cryosection
model however may overstate the role of ROS in DEJ separation.
A similar study in neutrophil mediated BP evaluated luteolin,
a plant-derived flavonoid with potent anti-oxidative and anti-
inflammatory properties effects in ex vivo cryosection model of
BP, resulting in a significant reduction of autoantibody-induced
DEJ separation. However in vivo mouse experiments did not
yield comparable results (170). Thus, further in vivo studies
are needed to determine the role of antioxidants in inhibiting
eosinophil induced ROS in BP.

Can Eosinophils Sustain Local Immune
Response?
Eosinophils express a series of cytokines involved in plasma
cell survival such as activation and proliferation-induced ligand
(APRIL), IL-6, IL-4, IL-5, IL-13, IL-10, and TNF (171, 172).
Therefore, they could in theory provide a local stimulus
sustaining Ig producing plasma cells in the dermis. Eosinophil IL-
16 a key cytokine in T-cell recruitment, as well as IL-4, IL-5, and
IL-13 can stimulate Th2 immunotype. Thus, eosinophils could
also in theory perpetuate T-cell stimulation and a Th2 milieu.

Effect of Eosinophils on B-Cells
B-cell responses are regulated by a series of signals including IL-2,
IL-4, IL-7, IL-15, and members of the TNF family such as CD40
ligand (173). In the past two decades, two TNF family molecules:
B cell-activating factor of the TNF family (BAFF) andAPRIL have
been recognized as key regulators of normal B cell functions and
autoimmune B cell induction, both of which are expressed by
eosinophils (174).

APRIL binds to receptors such as transmembrane activator
and calcium modulator ligand interactor (TACI) and B cell
maturation antigen (BCMA) (175, 176). Normal functions
of APRIL include: increasing B-cell antigen presentation,
stimulation of antigen-activated B-cells, enabling isotype
switching in B cells, and augmenting plasma cell survival
(174, 177, 178). BAFF acts as a potent B-cell growth factor as well
as stimulus for immunoglobulin production (173, 179).

BAFF levels are significantly elevated in patients with BP.
Interestingly, BAFF levels increased before the anti-BP180
antibody level and quickly decreased in response to treatment,
making it a useful marker for early disease (180). Levels of
APRIL are likewise elevated in BP, and closely correlate with
BAFF. Levels of APRIL similarly occur extremely early on in the
development of disease, and thus appear to be a key mediator
prior to the development of detectable levels of autoantibodies
(181).Whether the APRIL and BAFF in BP primarily comes from
eosinophils or other immune cells remains unknown.

Effect of Eosinophils on T-Cell Recruitment
CCL5 (RANTES) is a chemoattractant for CD4+ memory T
cells, monocytes, and eosinophils (182, 183). In vitro studies
have shown that RANTES activates T lymphocytes in an
antigen-independent manner (184). RANTES may also activate
eosinophils, upregulating their expression of adhesion molecules
and enhance transendothelial migration (182, 183, 185, 186). IL-
16 is likewise a strong attractant of CD4+ T-cells. Eosinophils
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release both IL-16 and RANTES. Even at very low concentrations,
RANTES and IL-16 induce migration of T-lymphocytes. Thus,
eosinophils can potentially amplify the immune response
by recruitment of CD4+ lymphocytes as well as additional
eosinophils (187). These interactions have yet to be elucidated in
BP.

Effect of Eosinophils on Th2 Polarization
Th2 polarization may be driven by eosinophil production of
IL-4, IL-5, and IL-13 (188). In addition, eosinophil expression
of indoleamine 2,3-dioxygenase (IDO) which catalyzes the
conversion of tryptophan to kynurenines, can regulate T cell
subset selection toward Th2 (189). Thus, eosinophil products can
serve as Th2 adjuvants via dendritic cell regulation (190, 191).

Eotaxin andMCP-4 are two chemokines that play a significant
role in the selective recruitment of not only Th2 effector cells,
but also eosinophils to the inflammatory site of BP, both of
which are present at elevated levels in tissue and blister fluid
(79, 122, 192). In a series of experiments investigators have found
that eotaxin and MCP-4 mRNA were expressed in all biopsies of
BP patients, present in the epidermis, and were also expressed
in eosinophils. Immunohistochemical studies confirmed that
these chemokines were localized to the granules of eosinophils
(79). Overall, the levels of Th2 associated chemokines (eotaxin

and MCP-4) in blister fluid are significantly greater than Th1
associated chemokines (MIP-1B and IP-10).Whether eosinophils
or keratinocytes are the primary source of these chemokines is
unclear (193).

Keratinocytes Exposed to Anti-BP180
Antibodies Express Key Cytokines and
Chemokines Involved in Eosinophil
Chemotaxis
In BP, eosinophils are classically aligned along the basement
membrane, with several eosinophils often traveling into the
epidermis via exocytosis. While eosinophil binding to the BMZ
is known to require IgG and complement (not IgE), the ability
of eosinophils to exocytose into the epidermis likewise cannot
sufficiently be explained by this. Thus, keratinocyte signaling is
likely to have a pivotal role, as keratinocytes can express key
chemokines such as IL-8 and eotaxins.

Interleukin-8
IL-8 is produced by keratinocytes when exposed to
BP autoantibodies (42, 44, 194–197). IL-8 is a known
chemoattractant for neutrophils (198, 199). Studies investigating
relationship of neutrophils, eosinophils and IL-8 have shown
that IL-8 stimulates neutrophils to induce trans-basement

FIGURE 2 | Schematic representation of known and potential pathways by which eosinophils can contribute to the pathogenesis and maintenance of autoimmunity in

bullous pemphigoid. (A) Eosinophils bind anti-BP180 IgG, aligning along the BMZ. (B) Dermal eosinophils express FcεRI which can bind to anti-BP180 IgE leading to

DEJ separation. (C) Upon activation with IL-5 eosinophils can lead to DEJ separation and degranulation. (D) MMP9 is secreted from eosinophils and is capable of

cleaving BP180. (E) Eotaxin and IL-8 are expressed in the epidermis, acting as eosinophil chemotactic chemokines, attracting further tissue eosinophilia. (F) Eotaxin

and MCP-4 are released from eosinophil granules, further driving tissue eosinophilia and Th2 polarization. (G) IL-16 is released from eosinophils and is capable of

stimulating T-cell response. (H) Eosinophils can directly degranulate on and (I) directly bind to neurons leading to increase branching and potentially pruritis. (J)

Eosinophils secrete IL-31, a major pruritogen which can stimulate nerves. (K) Eosinophils are capable of acting as antigen presenting cells, potentially leading to T-cell

responses by binding bound antigen via MHC-II to T-cell receptors. (L) Eosinophils express BAFF and APRIL, potentially stimulating local autoimmune B-cells.
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membrane migration of eosinophils in the airways of asthmatic
patients (200). Upon lipopolysaccharide (LPS) and IL-8
stimulation, neutrophils produce several chemoattractants for
eosinophils such as leukotriene B4 and PAF that can recruit
eosinophils and induce trans-BMZ migration (201, 202).
Interestingly, IL-8 does not stimulate eosinophils alone to
migrate through artificial BMZ (Matrigel) (203). Therefore IL-8
seems to play a key role to stimulate neutrophils resulting in
subsequent trans-basement membrane migration of eosinophils
(197).

Autoantibodies to BP180 mediate the release of IL-8 from
human keratinocytes in a dose and time dependent manner
(42, 195). In fact, this cytokine is known to be elevated
in sera and blister of BP patients with significantly higher
levels of IL-8 in blister fluid as compared to serum (42, 194,
196).

Eotaxins
Aside from stimulating Th2 polarization, eotaxins have a
key role in the attraction of eosinophils into their target
tissues. Eotaxins consists of three chemokines CCL11, CCL24,
and CCL26 (204). The main eotaxin receptor is CCR3
which is expressed on all eosinophils in peripheral circulation
(205).

The presence of elevated levels of eotaxin, IL-5 and
CCR3 has been demonstrated in blister fluid, lesional and
perilesional skin in BP (77, 122). Significant correlation
with these markers and the number of dermal infiltrating
eosinophils has also been demonstrated (77). In addition,
studies investigating specific ligands have shown that CCL11
and CCL26 are significantly associated with activated
eosinophils (204). Epidermal expression of eotaxin appears
to be a consistent feature among all eosinophilic dermatoses
(193).

CONCLUSION

Eosinophils are complex cells with numerous functions. They
generally make up the predominant inflammatory cell-type seen
in BP. In recent years, the overall understanding of eosinophils
has significantly improved, leading to new avenues to pursue
in the pathogenesis of BP. Several eosinophil pathways have
well-defined roles in the pathogenesis of BP that demonstrate
not only a correlative role in disease and severity, but rather a
causative.

• MMP9 is secreted from eosinophils and is capable of cleaving
BP180 and activating NE

• Eosinophil degranulation proteins are deposited on basal
keratinocytes

• Eosinophil extracellular traps can contribute to DEJ
separation. This can be abrogated with DNAse treatment

• BP180 IgE autoantibodies need eosinophils in order to
mediate DEJ separation in vivo. This requires FcεRI which
while not typically expressed on eosinophils, is significantly
overexpressed in BP.

• Eotaxin and MCP-4 are seen in eosinophil granules in BP
patients, thus perpetuating tissue eosinophilia.

Aside from these known direct roles in the pathogenesis of BP,
several known functions of eosinophils have a scientific rationale
to contribute to symptomatology and the pathogenesis of BP.
Limitations to drawing further conclusions are summarized
below:

• Eosinophils are the key producer of IL-31, a known pruritogen,
in BP. Whether this is the primary pruritogen in BP is not
known.

• Eosinophils can directly attach or degranulate onto peripheral
and autonomic nerves, inducing branching and nerve growth
which can lead to pruritis. While known to occur in other skin
disease, this has not been studied in BP.

• Eosinophils can act as functional APCs. It is not known
whether eosinophils in the skin can function as APCs, and
whether they can effectively process the BP180 antigen

• Eosinophil degranulation proteins are known to be cytotoxic
and have been shown to be cytotoxic to keratinocytes.Whether
this cytotoxicity has in vivo contributions to the pathogenesis
of BP has not been studied.

• Eosinophils cause generation of ROS which when
blocked in ex vivo models, can prevent DEJ separation.
Whether eosinophil induced ROS is sufficient to
lead to disease in vivo has not been studied. In
neutrophils, this is not sufficient to prevent blister
formation.

• Eosinophils are known to produce BAFF and APRIL, two
key regulators of autoimmune B-cells. Whether they produce
BAFF and APRIL in BP, and whether this is indispensable in
promoting B-cell responses in BP is not known.

• Eosinophils are known to secrete IL-16 and RANTES, two key
T-cell recruiting molecules. Whether this occurs in BP, and
whether this is indispensable for T-cell involvement in BP is
not known.

• Eosinophils are known to secrete IL-4, IL-5, and IL-13 which
can promote Th2 polarization. Whether they are the primary
source of IL-4, IL-5, and IL-13 in BP, as well as whether they
are indispensable in promoting Th2 polarization in BP is not
known.

• Keratinocytes express Eotaxin and IL-8, both strong
attractants for eosinophil migration. Whether this has
pathologic significance is not known.

The principle mechanism by which eosinophils can potentially
contribute to the pathogenesis of BP are summarized as
a schematic in Figure 2. Future studies addressing these
uncertainties will provide a more thorough understanding of
the roles of eosinophils in BP, as well as eosinophils in the
skin.
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